(3S-5S-6E)-7-[3-(4-fluorophenyl)-1-(propan-2-yl)-1H-indol-2-yl]-3-5-dihydroxyhept-6-enoic-acid and Orthomyxoviridae-Infections

(3S-5S-6E)-7-[3-(4-fluorophenyl)-1-(propan-2-yl)-1H-indol-2-yl]-3-5-dihydroxyhept-6-enoic-acid has been researched along with Orthomyxoviridae-Infections* in 2 studies

Other Studies

2 other study(ies) available for (3S-5S-6E)-7-[3-(4-fluorophenyl)-1-(propan-2-yl)-1H-indol-2-yl]-3-5-dihydroxyhept-6-enoic-acid and Orthomyxoviridae-Infections

ArticleYear
Fluvastatin delays propagation of viral infection in isolated rat FDB myofibers but does not affect exocytic membrane trafficking.
    Cell biology international, 2015, Volume: 39, Issue:11

    We have utilized the enveloped viral model to study the effect of fluvastatin on membrane trafficking in isolated rat myofibers. Our immunofluorescence studies constantly showed that infections in myofibers, which were treated with fluvastatin prior and during the infection with either vesicular stomatitis virus (VSV) or influenza A virus, propagated more slowly than in control myofibers without drug treatment. Experiments with a virus expressing Dad1 tagged with green fluorescent protein (GFP-Dad1) showed that fluvastatin did not affect its distribution within the ER/SR network and immunofluorescence staining for GM130 did not show any marked effect on the structure of the Golgi components. Furthermore, fluvastatin did not inhibit trafficking of the chimeric transport marker VSV temperature sensitive G protein (tsG-GFP) from the ER to the Golgi. We next subjected VSV infected myofibers for pulse-chase labeling experiments and found that fluvastatin did not slow down the ER-to-Golgi trafficking or Golgi to plasma membrane trafficking of the viral glycoprotein. These studies show that fluvastatin inhibited the propagation of viral infection in skeletal myofibers but no adverse effect on the exocytic trafficking could be demonstrated. These results suggest that other effects of statins rather than inhibition of ER-to-Golgi trafficking might be behind the myotoxic effects of the statins.

    Topics: Animals; Disease Models, Animal; Endoplasmic Reticulum; Fatty Acids, Monounsaturated; Fluvastatin; Green Fluorescent Proteins; Indoles; Influenza A virus; Male; Membrane Glycoproteins; Muscle Fibers, Skeletal; Orthomyxoviridae Infections; Protein Transport; Rats; Rats, Sprague-Dawley; Recombinant Fusion Proteins; Vesicular Stomatitis; Vesicular stomatitis Indiana virus; Viral Envelope Proteins

2015
Protective effect of fluvastatin on influenza virus infection.
    Molecular medicine reports, 2014, Volume: 9, Issue:6

    Statins are 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors and have pleiotropic effects. It has been suggested that statins may be a potential treatment during the next influenza pandemic. In a previous study we found that a statin/caffeine combination protects BALB/c mice against Influenza A, subtypes haemagglutinin type 5 and neuraminidase type 1 (H5N1), H3N2 and H1N1 infection. The effect of statins alone on influenza virus infection, however, is not known. In this study, it was investigated whether fluvastatin is capable of inhibiting influenza A virus replication in vitro. The results demonstrated that the synthesis of viral RNA and protein was affected by fluvastatin treatment. Virus production was markedly reduced when fluvastatin was administered simultaneously with the virus; however, a greater inhibition was observed when fluvastatin was added following viral adsorption. The selectivity index [SI; 50% cytotoxic concentration (CC50)/50% inhibition concentration (IC50)], however, was only 21. It was further demonstrated that fluvastatin protects host cells against influenza-induced inflammation by reducing the production of tumour necrosis factor-α, interleukin 8 and interferon γ. In conclusion, the results demonstrated that fluvastatin exerted a minor inhibitory effect on influenza virus infection, which involved anti-inflammatory activities.

    Topics: Animals; Antiviral Agents; Cell Line; Cell Survival; Cytokines; Disease Models, Animal; Dogs; Fatty Acids, Monounsaturated; Fluvastatin; Humans; Indoles; Influenza A virus; Influenza A Virus, H1N1 Subtype; Inhibitory Concentration 50; Mice; Orthomyxoviridae Infections; RNA, Viral; Virus Replication

2014